RTS4 Progress

There were a few glaring features missing, but the last build was mostly complete functionally. I’ve since been working on getting the game to feel much more polished.


The prototype system used for unit configurations was changed to be far more flexible and will work more like CSS, where “technologies” (classes in CSS) have various selectors which determine which entities they are active for. Fields are overwritten in the same way, but a single units prototype can be spread throughout the file; the end result is that it is now easy to add upgrades that can have a significant effect on the game.
Unity RTS4 SignalFires upgrade example


I never paid much attention to selection previously, but entities can now be box-selected by boxing any part of them (instead of just their origin). The units centre is restricted to the current box selection, then that restricted point is tested against the units collider to determine if the unit should be boxed or not. Buildings also attempt to move to a valid nearby place when attempting to place them on top of another building (with standard 2D un-intersect style physics)


A game will obviously have a lot of projectiles (arrows, priest attack, etc.), which all act very simply. Theres now a special subsystem dedicated to handling projectiles in a much more efficient way than creating a new entity for each projectile. They are rendered and (soon) animated with the same prototype configuration as normal entities.


This one is a much more substantial feature addition. The game now has a minimap which rotates with the camera and shows/allows movements of the camera frustum. I may look in to dirty sectioning for it later, but the draw overhead is so minor that it probably doenst matter that its O(n).
Unity RTS4 MiniMap Screenshot


The game now tracks a separate list of entities which need to be updated each frame, which is only units tasked with a command. It is possible to reduce this to only units which have a move command, but the current method is likely fast enough. The game also has an EntityMap, which tracks nearby groups of entities (white boxes in the image below). Entities will delay repathing when given a new target until required. Loading is still too slow for my liking; it takes 80ms to parse the prototypes and 550ms to instantiate entities in the current demo map, but optimisations come later!
EDIT: Oops.. I still had some testing code in there; instantiating entities takes 50ms now.
Unity RTS4 EntityMap Debug View


Was working well previously, but some of the newer optimisation and validation changes have probably broken things. Dont expect this to work terribly well until nearer to release.


AOM-inspired and compatible game

I’ve decided to create a blog to document progress on random projects I’m working on, the latest one being an AOM-inspired RTS.

A wise man (Dylan from AGDC) once taught me of the importance of coming up with a mission statement for each game, so that the original intent of the game remains throughout development. My goals for this game are pretty simple:

Bring the latest improvements and expectations from the RTS genre to Age of Mythology

This is impossible by simply modding the existing game, and doing that would be no fun, so instead I am on my way to build my own game, attempting to achieve the same style and feel as AoM, but going beyond what was possible back in 2001, when Ensemble built their masterpiece.

The modding community at http://aom.heavengames.com/ has invested a huge amount of time and effort into building innovative and wonderful extensions and tweaks for the game which should not be ignored. This new game will be built to take advantage of as many of these assets as possible.

Random Maps

Age of Mythology has quite a unique random mapping system, in which a relatively short code file builds a complex, beautiful, and balanced game world with a given seed. This gives an effectively infinite number of possible maps each with unique opportunities for strategies and gameplay. These maps are written in a language called XScript, in an environment called RMS. The maps define Areas with tile sets to decorate and define those areas, Connections connecting the various areas and ensuring paths are possible, and object/player placements.


I have not yet investigated in much detail how the AI works in Age of Mythology, but this appears to also make use of the XScript language to define behavioral properties.

Tech Tree and Entity Properties

Age of Mythology is a very data driven game, most properties about the buildings, units, god powers, and tech tree of the game is driven by XML files. An XML file for a building will describe all the units which can be produced from it, through icons in a grid. The system can then look the data file for the units to extract more information about them. The units can then have their own set of actions for things they can produce, which then reference yet more entities. A number of constraints on these items prevents them from being visible until the appropriate tech has been unlocked.

More progress has been made at the time of this writing, but the initial build looked something like this with the acropolis.xs map loaded. This build had a very rough first-pass area system just for testing, had scale issues, and didnt support smoothing properly, but this shows the XScript compiler working, a map loading, and the API’s being executed correctly.

This game will be code-named RTS4 from now on (ignore that the title bar says AOT)